www.jchps.com

Comparative study on the mechanical testing of fiber reinforced polymer composites

T. Rajasekaran^{*}, S. Vigneshkumar

Department of Mechanical Engineering, SRM University, Kattankulathur, TamilNadu, India *Corresponding author: E-Mail: rajasekaran.t@ktr.srmuniv.ac.in, Phone: 09884420995 ABSTRACT

Composite materials consist of two or more constituent materials, the fiber and the matrix. Generally the matrix is of ductile and fiber is of brittle in nature. Fiber reinforced polymer composites are becoming very popular and replacing conventional materials nowadays, because of their excellent properties suitable for various applications. The properties of fiber reinforced polymers are comparable to most conventional materials like metallic materials. This is due to their lower density compared to the higher density in metals which leads to higher strength to weight ratio for the composites compared to that of the metallic materials. These composites are also easier to obtain in desirable shape and require much less energy in making the required product. There are number of fibers available for making composite material including synthetic as well as natural fibers. Natural fibers are available in plenty and it is also ecofriendly, which go waste if not utilized further. In this experimental work, different fibers sisal fiber, kenaf fiber, banana fiber, carbon fiber and rice husk hybrids are separately used to prepare a specimen using a thermosetting polymer unsaturated polyester and suitable hardener, accelerator and catalyst for the improvement of the process, various mechanical testing such as Tensile test, Flexural test, Impact test of the composite material under various conditions are carried out. The properties are compared. ASTM standards were followed for carrying out all these tests.

KEY WORDS: Composite materials, fiber, polymer.

1. INTRODUCTION

Fiber reinforced polymer composite materials are very popular and replacing conventional materials nowadays because of their excellent properties suitable for various applications. Natural fiber-reinforced composites is growing rapidly due to their mechanical properties, low cost, processing advantages and low density. The availability of natural fibers such as kenaf, sisal, banana in India is more and also has some advantages over traditional reinforcement materials in terms of cost, density, renewability, recyclability, abrasiveness and biodegradability. The performance of the fiber reinforced composites mainly depends on the fiber matrix and the ability to transfer the load from the matrix to the fiber. The sisal, jute and glass fibers with epoxy resin are used to produce the hybrid composite materials with weight ratio of fibers to resin as 30:70. The use of natural fibers resulted in the reduction of cost and it has no harmful environmental impact as these are easily biodegradable.

2. EXPERIMENTAL DETAILS AND PROCEDURE

In this work we have used the natural, synthetic fiber and adding the rice husk used in this composites. The polyester resin is prepared by adding 1.5% accelerator (Cobalt Octate) and 1.5% catalyst (Methyl ethyl ketone peroxide). Catalysts are added to the resin system shortly before use to initiate the polymerization reaction. The catalyst does not take part in the chemical reaction but simply activates the process. An accelerator is added to the catalyzed resin to enable the reaction to proceed at workshop temperature and at a greater rate. The spacer is placed on the plastic sheet. Now a layer of resin is applied on the plastic sheet. A layer of fiber is placed on top of the resin. Resin is applied on top of the layer of fiber and its ensured that the fiber is completely wet. Fiber reinforced polymer composite plates were made. The manufacturing process selected for the fabrication of the specimen plate is Compression Molding Process. Combinations: [30% Fibers + 70% polyester (by weight)]. And the composite are: a) Sisal + Rice husk + Polyester, b) Sisal + Banana + Kenaf+ Polyester, c) Carbon+Rice husk+ Sisal + Polyester.

Tensile Test: The tensile test is done by cutting the composite specimen as per ASTM D638 standard. The dimension are as follows, the overall length is 165mm, Gage length is 50mm, width of narrow section is 13mm and overall width is 19mm in shown in Fig.1. A universal testing machine with maximum load rating of 400 kN is used for testing. The material is held by the grips and load is applied till failure occurs. Ultimate tensile test is noted. A stress versus strain graph is generated.

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Flexural test: The Flexural test is done in a three point flexural setup as shown in Fig. 2 based on ASTM: D790 standard. The specimen bends and fractures when the load is applied at the middle of the beam. This test is carried out in the universal testing machine from which the breaking load is noted and Load vs Deflection graphs are generated.

Fig.2. Flexural testing

Impact test: The impact test set up consists of a pendulum which is dropped from an angle of 125 degree to impact the specimen and to fracture it Izod impact test was performed on the test pieces. The test pieces were fabricated following the standard ASTM D4813 which is the standard for impact test for un-notched test pieces. The loss of energy during impact that is the energy absorbed

Fig.3. Tested specimen of before tensile test (a) carbon, sisal and rice husk (b) sisal and rice husk (c) sisal, banana and kenaf

3. RESULTS AND DISCUSSION

Tensile test: The composites specimens are tested for tensile properties in universal testing machine and obtained tensile properties are shown in Table. 2. The stress strain curve was obtained during the test. Figure.4 shows the stress strain curve for fiber reinforced composite. In carbon and sisal composite the observed tensile strength value 92.737 MPa and yield strength value 75.059 MPa is high when we compare to other two composite material. In sisal and rice husk composites observed tensile strength 82.765 MPa and yield stress value 65.251 MPa is high when we compare to other two samples. In sisal, banana and kenaf composites observed tensile strength 84.784 MPa and yield stress value 64.148 MPa is high when we compare to other two samples.

Fig.4. Stress Vs Strain Curve for Tensile Test of (a) Carbon, Sisal and Rice husk (b) Sisal, Banana and Kenaf (c) Sisal and Rice husk

Table.1. Tensile test results					
S.No	Sisal + Rice Husk	Carbon + Sisal + Rice husk	Sisal + Banana + kenaf		
	(MPa)	(MPa)	(MPa)		
Specimen1	78.328	92.737	81.306		
Specimen 2	84.784	90.198	68.557		
Specimen 3	81.345	88.18	82.765		

Table.1.Tensile test results

		ISSN: 0974-2115
www.jchps.com	Journa	al of Chemical and Pharmaceutical Sciences
	a b	c

Fig.5. Tested specimen of after tensile test (a) carbon, sisal and rice husk (b) sisal and rice husk

(c) sisal, banana and kenaf

Flexural test: Flexural properties of the fiber reinforced composite will be discussed. The work piece was fabricated following the standard ASTM D790. The specimen bends and fractures when the load is applied at the middle of the beam. This test is carried out in the universal testing machine from which the breaking load is noted and Stress vs Elongation graphs are generated. The flexural properties found are shown in Table. 2 The Stress vs Elongation curve for this flexural test is shown in the Figure. 7. The flexural load for the graph being 226.01 N.

С

Fig.6. Tested specimen of after flexural test (a) carbon, sisal and rice husk (b) sisal and rice husk (c) sisal, banana and kenaf

Fig.7. Flexural test for sisal + Banana + Kenaf fiber composite

Table.2. Flexulat test results						
S.No	Sisal -	Rice Husk Carbon + Sisal + Rice hus		Sisal + Rice husk	Sisal + Banana + kenaf	
	Flexural	Flexural	Flexural load	Flexural strength	Flexural	Flexural
	load (N)	strength (MPa)	(N)	(MPa)	load	strength (MPa)
specimen 1	47.448	10.664	226.02	77.85	345.73	66.09
specimen 2	75.68	16.98	212	73.02	355.42	67.94
specimen 3	65.04	13.54	209	71.02	342.26	65.12

Table.2. Flexural test results

Impact test: Izod impact test was performed on the test pieces. The test pieces were fabricated following the standard ASTM D4813 which is the standard for impact test for un-notched test pieces. In the composite sisal and rice husk energy absorption is 3.35J. Sisal banana and kenaf composite energy absorbed 1.65J and maximum energy absorbed carbon, sisal and rice husk is 3.5. The loss of energy during impact that is the energy absorbed is depicted in Table. 3. And the failure of the specimen pieces is shown in Fig. 8.

Table.5. Impact test results					
	Energy absorbed (J)				
S. No	Sisal + Rice Husk	Carbon + Sisal + Rice husk	Sisal + Banana + kenaf		
Specimen 1	2.75	3.0	1.50		
Specimen 2	3.25	3.5	1.65		
Specimen 3	2.95	2.75	1.55		

Table.3. Impact test results

www.jchps.com

ISSN: 0974-2115

С

Fig.8. Tested specimen of after impact test (a) carbon, sisal and rice husk (b) sisal and rice husk (c) sisal, banana and kenaf

4. CONCLUSION

This paper presents the fabrication of hybrid natural composite using Sisal, Kenaf, Banana, Rice Husk and Carbon fiber reinforced natural composite by compression molding method. The work compares their mechanical properties. From the tests and comparisons, the following conclusions are drawn.

The ultimate tensile strength of the composite carbon, sisal and rice husk is 92 N/mm² and the flexural strength is 77.85 N/mm² and the impact strength energy absorbed 3.5 J. The ultimate tensile strength of the composite sisal and Rice husk is 84.784 N/mm² and the flexural strength is 16.98 N/mm² and the impact strength energy absorbed 3.25 J.

The ultimate tensile strength of the composite sisal, banana and kenaf is 81.306 N/mm² and the flexural strength is 67.94 N/mm² and the impact strength energy absorbed 1.65 J. The composite carbon, sisal and rice husk shows relatively higher ultimate tensile strength of 92 N/mm² than other composites. The composite carbon, sisal and rice husk shows relatively higher flexural strength of 77.85 N/mm² than other composites. Also the carbon, sisal and rice husk composite absorbs relatively high energy of 3.5 J which is higher than composites fabricated.

REFERENCES

Alkbir M.F.M, Sapuan S.M, Nuraini A.A, Ishak M.R, Effect of geometry on crashworthiness parameters of natural kenaf fibre reinforced composite hexagonal tubes, Materials and Design, 60, 2014, 85-93.

Arthanarieswaran V.P, Kumaravel A, Kathirselvam M, Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization, Materials and Design, 64, 2014, 194–202.

Hongxi Zhang, Xuefeng Ding, Xue Chen, Yuejia Ma, Zichen Wang, Xu Zhao, A new method of utilizing rice husk: Consecutively preparingd-xylose, organosolv lignin, ethanol and amorphous superfine Silica, Journal of Hazardous Materials, 291, 2015, 65–73.

Jeyanthi S, Janci Rani J, Improving Mechanical Properties by Kenaf Natural Long Fiber Reinforced Composite for Automotive Structures, Journal *of* Applied Science and Engineering, 15, 2012, 275-280.

Mallick P.K, Fiber Reinforced composites, Third Edition, 2008.

Rajasekaran T, Palanikumar K, Vinayagam B.K, Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool, Prod. Eng. Des. Devel., 5, 2011, 191-199.

Rajasekaran T, Palanikumar K, Vinayagam B.K, Experimental investigation and analysis in turning of CFRP composites, Journal of Composite Materials, 46 (7), 2011, 809-821.

Ramesh M, Palanikumar K, Hemachandra Reddy K, Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites, Composites: Part B, 48, 2013, 1-9.

Sathish S, Ganapathy T, and Bhoopathy T, Experimental testing on hybrid composite materials, applied mechanics and materials, Applied Mechanics and Materials, 592, 2014, 339–343.

Srinivasan V.S, Rajendra Boopathy S, Sangeetha D, Vijaya Ramnath B, Evaluation of Mechanical and Thermal Properties of Banana–Flax Based Natural Fibre Composite, Materials and Design, 60, 2014, 620–627.

Venkatraman M, Study and analysis Compound die manufacturing using WC- EDM process, Journal of Chemical and Pharmaceutical Sciences, 9, 2015, 214-218.

Yihui Pan, Zheng Zhong, A nonlinear constitutive model of unidirectional natural fiber Reinforced composites considering moisture absorption, Journal of the Mechanics and Physics of Solids, 69, 2014, 132–142.

Yoon-Ji Yim, Kyong Yop Rhee, Soo-Jin Park, Influence of electroless nickel-plating on fracture toughness of pitchbased carbon fibre reinforced composites, Composites Part B, 76, 2015, 286-291.

January-March 2016

660